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Abstract

We consider the implications of fermionic asymmetric dark matter (ADM) for a “mixed neu-

tron star” composed of ordinary baryons and dark fermions. We find examples, where for a

certain range of dark fermion mass – when it is less than that of ordinary baryons – such sys-

tems can reach higher masses than the maximal values allowed for ordinary (“pure”) neutron

stars. This is shown both within a simplified, heuristic Newtonian analytic framework with

non-interacting particles and via a general relativistic numerical calculation, under certain as-

sumptions for the dark matter equation of state. Our work applies to various dark fermion

models such as mirror matter models and to other models where the dark fermions have self

interactions.
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I. INTRODUCTION

Cold dark matter (CDM), favored by most astrophysical and cosmological

observations, can be realized in symmetric or asymmetric scenarios. In the first class

of models, dark matter is made of stable X particles and an equal amount of stable

X̄ antiparticles of mass mX . In the early universe, these were in thermal equilibrium

and their residual abundance ΩX is fixed, at the “freeze-out” value, when the rate of

the Hubble expansion overcomes that of X̄ − X annihilation. A prototypical example,

which has been extensively studied, is provided by supersymmetric models with R-parity

conservation, where the lightest superpartner is stable and plays the role of the dark

matter of the universe.

As yet no light sub-TeV SUSY partners have been discovered at the LHC,

and searches for electrons, positrons or photons from annihilations in clumps of DM in

and around our Galaxy, do not provide solid “indirect” evidence for symmetric massive

DM. Moreover, the ongoing direct underground searches put very strong bounds on the

scattering cross sections of massive X’s on nuclei. In the symmetric case, accretion of

DM particles onto the sun accelerates the rate of particle-antiparticle annihilation. The

resulting photons, electrons, etc., are all trapped in the star. However, for massive DM

particles, looking in ICE-CUBE (the large km3 Cerenkov radiation detector near the

south-pole) for the resulting UHE neutrinos is an excellent indirect detection method.

The fact that no such energetic neutrinos have been detected constrains symmetric DM

models. Consequently there has been, in recent years, a renewed interest in a second

class of models: the asymmetric dark matter (ADM) models. In such models, the relic

ADM density is determined in a manner analogous to that of ordinary baryonic matter,

not by the freeze-out of DM annihilation, as in the symmetric case. An excess of dark

fermions (over the antifermions) remains after the annihilation of most antiparticles. The

required dark matter density in such models is readily achieved if the ratio of the ADM

particles mass and that of ordinary baryons is tuned inversely with the corresponding

ratio of asymmetries. Many examples of such models have been proposed over the years

[1]. Here we consider variants in which the dark matter particle is rather light with mass

in the sub- GeV range. Scattering of such light CDM on most detector materials yields

2



recoil energies ∼ 0.1 KeV which are below the existing experimental thresholds. Hence

the present upper bounds on the X-N scattering cross-sections do not apply. Also the

stringent indirect upper bounds from missing energy searches at the collider [2] apply

for massive mediators of the X-nucleon interactions - and do not apply if the exchange

of a relatively light ”dark photon” mediates X-N scattering, as is the case in several

asymmetric dark matter models. This may allow σX−N of order 10−34 cm2 – which is

high enough to be relevant in astrophysical settings and yet is 10 orders of magnitude

smaller than the intra- species cross-sections of ordinary matter and potentially of dark

matter.

For our purpose, in this paper, it is useful to consider a class of models for

ADM proposed in [3] and its possible variants. These contain an additional sector mir-

roring our universe. The mirror sector consists of particles and forces related to those of

the familiar standard model by a mirror symmetry. As a result, there are no new param-

eters in the model prior to gauge symmetry breaking [4]. In generic mirror models, an

important constraint comes from BBN due to the presence of three extra neutrinos and

an extra photon. One way to avoid this constraint is to to assume that the temperature of

the mirror sector is smaller than that of the familiar sector [5]. An alternative possibility

detailed in [3] is to have the symmetry breaking in the mirror sector sufficiently different

from that in the familiar sector so that all the mirror neutrinos and mirror photon are

heavy and have decayed by the BBN epoch and only the mirror neutrons survive con-

stituting the dark matter. Our considerations are independent of the model details of

[3] and could be applied to variants of the model where the mirror photon is very light,

e.g. less than an eV. The details of large scale structure formation depend on the specific

model for the asymmetric dark matter. Being self interacting the dark matter will no

longer provide collision-less dark halos with many possible cosmological ramifications [6].

In asymmetric DM models, the dark matter particles can accumulate in as-

trophysical objects and alter their properties. The goal of the present paper is to study

the effect of such accumulation on neutron star properties. Similar studies for the case

of scalar ADM have been reported in several papers [7], where Bose condensation plays

an important role. The situation for the case of fermionic dark matter is however very

different due to the Pauli exclusion principle and our goal is to make some remarks on this
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case. We find that under certain conditions, the mass of the mixed neutron- DM star can

exceed the Chandrasekhar-like mass limit for ordinary neutron stars. The recent discovery

of a 2M� binary radio pulsar [8], already severely constrains nuclear matter equations of

state, if it is a “pure” neutron star and possible future observation of such neutron stars

with higher masses would be very difficult to reconcile with standard hadronic physics

but, as we show in this paper, such higher mass neutron stars seem to be more easily

realized as mixed neutron stars.

Another result of our discussion is that, for a mixed neutron star with two

species which interact with each other only via gravitational interactions, requiring sta-

bility (see sec. 4) imposes an interesting scaling relation between the number and energy

density and pressure. Such a relation will constrain the density profiles of the model as

well as the number distribution of the two species.

This paper is organized as follows: in sec. II, we discuss a Newtonian model

for a mixed neutron star; in sec. III, we present the general relativistic treatment of the

mixed neutron star containing both ordinary and dark fermions. In sec. IV, we discuss

the implications of stability (extremum with respect to variations of mass-energy density

keeping the total number of particles fixed) for the mixed neutron star; see Eq. (38).

We find the interesting relation cited above among pressure, density and the particle

number density in the two sectors. In sec. V, we present an illustrative example where we

employ the same equation of state for the familiar sector and the dark sector to discuss

the impact on neutron star mass. In sec. VI, we present some astrophysical discussion

and we conclude in sec. VII.

II. MAXIMAL MASS OF MIXED NEUTRON STARS: HEURISTIC DISCUS-

SION

Before proceeding to a detailed analysis, let us start with a heuristic discussion

based on Newtonian intuition for a mixed neutron star ignoring nuclear physics effects.

We generalize to the present mixed case, the discussion in [9] which estimated the maximal

mass of an ordinary neutron star. The total energy of a mixed neutron star is the sum of
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the relativistic Fermi energy and the gravitational energy: E = EF + EG where:

EF = β
h̄c

R1

N
4/3
1 + β

h̄c

R2

N
4/3
2 , EG = − 1

8πG

∫ ∞
0

(
Gm(r)

r2

)2

4πr2dr (1)

Here, β is a coefficient of order unity, Ni (i = 1, 2) denote the total number of

baryons (i = 1) and dark fermions (i = 2) and m(r) is the mass enclosed within a sphere

of radius r. We use a Newtonian approximation for m(r) and assume further ( as justified

a posteriori by the detailed numerical calculations) that the energy and mass densities

of the two species can be approximated as constants, in their respective spheres of radii

R1, R2 . Thus, we have

m(r) = M1

(
r

R1

)3

+M2

(
r

R2

)3

, r ≤ R1 (2)

m(r) = M1 +M2

(
r

R2

)3

, R1 ≤ r ≤ R2 (3)

m(r) = M1 +M2 , r ≥ R2 (4)

Substituting the above expression for m(r) in the integral expressing EG and

performing the integration over the inner, the intermediate and the outer regions we find:

EG = −3

5

GM2
1

R1

− 3

5

GM2
2

R2

− 3

2

GM1M2

R2

+
3

10

GM1M2

R2

(
R1

R2

)2

(5)

For the case where R2 exceeds R1, the last term is small compared to the

previous term and can be neglected. Hence, we get

E = βm
−4/3
1

h̄c

R1

M
4/3
1 − 3

5

GM2
1

R1

+ βm
−4/3
2

h̄c

R2

M
4/3
2 − 3

5

G(M2
2 + 2.5M1M2)

R2

(6)

where in the spirit of the Newtonian approximation we used Mi = Nimi, i = 1, 2, where

m1,2 are the masses of the familiar neutron and the dark fermion respectively.

Following [9], one can argue that the sums of the coefficients multiplying 1/R1

and 1/R2 should be positive in order to avoid gravitational collapse to a black hole. Thus

one gets

M1 −M0 ≤ 0 (7)

and

M2
2 −M

4/3
2 M

2/3
0

(
m1

m2

)4/3

+ 2.5M1M2 ≤ 0 (8)
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with

M0 =

(
5β

3

)3/2 m3
pl

m2
1

(9)

denoting the maximal mass of a pure neutron star. Its value is of the order of a solar

mass. Some realistic nuclear equations of state for familiar neutrons, including the one

employed in the next sections, allow values of M0 ≈ 2.5M�.

The total mass of the mixed neutron star is

M = M1 +M2 (10)

The above constraints correspond to the case where the neutrons-sphere is

within the outer radius, R2. We can consider the opposite case in which the dark matter

sphere is enclosed within the neutron-sphere. In this case we will get

M2 −M0

(
m1

m2

)2

≤ 0 (11)

M2
1 −M

4/3
1 M

2/3
0 + 2.5M1M2 ≤ 0 (12)

where M0 is the same as defined above.

Note that we do not obtain constraints on the radii, because the relativistic

limit for the Fermi energies was adopted. Had we taken the general expression for the

Fermi energies and minimized with respect to each radius, we would have obtained also

constraints on the radii. However, this would have increased the complexity of the heuris-

tic analytic estimates. Furthermore we find a similar result when solving numerically the

general relativistic (GR) mixed star model. It follows from the above constraints that

the maximal mass of an ordinary neutron star is M0 and that of a pure dark (mirror)

analog of a neutron star is M0(m1/m2)2. Therefore, this mass will be larger than that

of an familiar neutron star only if the mass of the dark (mirror) baryon is smaller than

the mass of the neutron. Since having degenerate neutron and dark matter fermion mass

decreases the maximal mass of the neutron star, this holds a forteriori for mixed neutron

stars. In what follows we use an illustrative value of m2 = 1
2
m1. The blue shaded area in

Fig. 1 marks the region in the M1 −M2 plane allowed by equations (7, 8) for m2 = 1
2
m1.

The yellow shaded area marks the region in the M1−M2 plane allowed by equations (11,

12). The masses are expressed in units of M0.

6



The blue shaded area corresponds to the case where the dark matter sphere

extends beyond that of the familiar neutron sphere. This region is particularly interesting,

as it allows a total mass exceeding the maximal mass of a pure neutron star. Note that

the maximally allowed dark fermion mass is always smaller than the neutron mass for

total mass to exceed the Chandrasekhar limit, M0 with the “ultimate” limit on the mixed

neutron star mass being four times that of the pure neutron star for dark matter mass

being half that of the familiar neutron. Clearly the ultimate limit depends on the ratio

m2/m1.
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FIG. 1. Allowed regions in the M1 −M2 plane for m2 = 1
2m1. Blue shaded area: R2 > R1.

Yellow shaded area: R1 > R2. Diagonal lines: loci of total mass.

III. DYNAMICS OF A MIXED NEUTRON STAR

Encouraged by the above heuristic results, we proceed to a fully general rela-

tivistic (GR) discussion. The energy momentum tensor of a mixture of two non-interacting

ideal fluids:

T µν = T µν1 + T µν2 = (ρ1 + p1)uµ1u
ν
1 − p1g

µν + (ρ2 + p2)uµ2u
ν
2 − p2g

µν (13)
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where ρ1,2 and p1,2 are the densities and pressures of the familiar and mirror matter. We

consider here an ideal case in which the interaction between DM and familiar fermions is

sufficiently weak that each tensor T1,2 is separately conserved.

We look for a spherically symmetric static solution of the Einstein field equa-

tions for the two-fluid “mixed neutron star”. Since we address here a mixture of two

fluids, we rederive the hydrostatic equilibrium equations for this case, starting with the

Einstein field equations[10]. The line element squared of a spherically symmetric static

metric can be written in the Schwarzshild coordinates (t, r, θ, φ) as

ds2 = gαβdx
αdxβ = e2φ(r)c2dt2 − e2λ(r)dr2 − r2

(
dθ2 + sin2(θ)dφ2

)
(14)

The α = β = t and the α = β = r equations, respectively, are

1

r2

d

dr

(
r(1− e−2λ(r))

)
= 8π

G

c2
T tt = 8π

G

c2
(ρ1 + ρ2) (15)

−r−2 + e−2λ(r)

(
r−2 + 2r−1dφ(r)

dr

)
= 8π

G

c2
T rr = −8π

G

c2
(p1 + p2) (16)

We also have the separate two covariant conservation equations of the energy

momentum tensors:

T µνi ;ν
= 0, i = 1, 2 (17)

The field equation (15) immediately yields

e−2λ(r) =

(
1− 2

G

c2

m(r)

r

)
(18)

where m(r) is the mass enclosed within r and is given by

m(r) =
∫ r

0
4π
(

(ρ1(r′) + ρ2(r′)
)
r′2dr′ (19)

The two covariant conservation equations of the energy momentum tensors,

equation (17) take the form:
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dφ(r)

dr
= −

(
ρ1(r) + p1(r)

)−1dp1(r)

dr
(20)

dφ(r)

dr
= −

(
ρ2(r) + p2(r)

)−1dp2(r)

dr
(21)

Combining them with the field equation (16) leads to a hydrostatic equilibrium

equation for each of the species:

dp1(r)

dr
= −G

(
ρ1(r) + p1(r)

)m(r) + 4πr3

(
p1(r) + p2(r)

)
r
(
r − 2Gc−2m(r)

) (22)

dp2(r)

dr
= −G

(
ρ2(r) + p2(r)

)m(r) + 4πr3

(
p1(r) + p2(r)

)
r
(
r − 2Gc−2m(r)

) (23)

These equations imply that each fluid satisfies its own hydrostatic equilibrium

equation which is of the form of a modified TOV (Tolman, Oppenheimer, Volkoff) equation

[11], [12]. In this paper, we assume that the two fluids are coupled only through gravity.

Given the two equations of state, and the two central energy densities, the

TOV equations (22, 23) are integrated up to r = R1 where p1(R1) = 0. Species 1 is

confined within this radius. From this radius on, only TOV2 (equation 23) is integrated

out to the radius R2 where p2(R2) = 0, which is the outer radius of the complete mixed

neutron star.

Once the solutions of equations (15-16) are obtained, equations (20-23) are

solved with the boundary condition φ(R2) = 1
2

ln
(
1− 2G

c2
M
R2

)
with M = m(R2) being the

mass of the mixed neutron star. This boundary condition is imposed by demanding that

the inner solution be matched to the external Schwarzschild solution for which φ = −λ.

In this way, a two-parameter (namely the two central densities) family of static

models is obtained. In contrast, ordinary neutron star models form a one-parameter (one

central density) family of solutions.

It is interesting that, combining the two covariant conservation laws of fermion

number densities ni

(niu
α
i ) ;α = 0, i = 1, 2 (24)
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(where uαi are the components of the relativistic velocity four-vector) with the two co-

variant conservation equations of energy momentum tensors (17) we find the isentropic

relations for each of the fluids

dρi
ρi + pi

=
dni
ni
, i = 1, 2 (25)

Using Eq.(20, 21) [13], and noting that pi(Ri) = 0, these equations lead to

n1(r) = m−1
1 e−φ(R1)+φ(r) (ρ1(r) + p1(r)) , n2(r) = m2e

−φ(R2)+φ(r) (ρ2(r) + p2(r)) (26)

In turn these constraints imply that inside the inner neutron radius R1, where two species

coexist and we have the relation,

e+φ(R1) n1(r)m1

ρ1(r) + p1(r)
= e+φ(R2) n2(r)m2

ρ2(r) + p2(r)
(27)

IV. STABILITY OF THE MIXED NEUTRON STAR

In what follows we show that the mass stability theorem [14] summarized

in Weinberg’s book [15] can be extended for a mixed neutron star (and in effect more

generally for any mixed star constructed out of two non-interacting fluids). This imposes

constraints on the equilibrium mass and density distributions of the dark matter relative

to familiar neutrons in a neutron star.

Theorem

For quasistatic spherically symmetric structures with fixed given total baryon

numbers (of the neutrons and the the dark mirror baryons), the total mass is stationary

for variations of the the two energy densities ρ1(r), ρ2(r) if and only if the two equilibrium

equations are satisfied.

As in the case of a single fluid, one considers the case where the entropy per

baryon is uniform. Using the Lagrange multipliers method we explore the implications of

demanding that

δM − λ1δN1 − λ2δN2 = 0 (28)
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where

M =
∫ ∞

0
4πr2

(
ρ1(r) + ρ2(r)

)
dr

and

Ni =
∫ ∞

0
4πr2ni(r)

[
1− 2Gm(r)

c2r

]−1/2

dr , i = 1, 2

with m(r) the mass enclosed within the radius r given by

m(r) =
∫ r

0
4πr′2

(
ρ1(r′) + ρ2(r′)

)
dr′

Combining the above equations, one gets∫ ∞
0

4πr2
(
δρ1(r) + δρ2(r)

)
dr − (29)

∫ ∞
0

4πr2
(
λ1δn1(r) + λ2δn2(r)

) [
1− 2Gm(r)

c2r

]−1/2

dr

−G/c2
∫ ∞

0
4πr

(
λ1n1(r) + λ2n2(r)

) [
1− 2Gm(r)

c2r

]−3/2

δm(r)dr = 0

The uniform entropy conditions, for each of the fluids, dρi
ρi+pi

= dni
nI
, i = 1, 2

imply that

δni(r)

ni(r)
=

δρi(r)

ρi(r) + pi(r)
, i = 1, 2 (30)

Substituting δm(r) =
∫ r

0 4πr′2
(
δρ1(r′) + δρ2(r′)

)
dr′, we can rewrite Eq. (29)

using the variations: δρ1(r), δ ρ2(r):∫ ∞
0

4πr2dr

[(
δρ1(r) + δρ2(r)

)
dr −

(
λ1n1(r)δρ1(r)

ρ1(r) + p1(r)
+
λ2n2(r)δρ2(r)

ρ2(r) + p2(r)

)
B−1/2

]
(31)

−G/c2
∫ ∞

0
4πr2

{∫ ∞
r

4πr′
(
λ1n1(r′) + λ2n2(r′)

)
B−3/2dr′

}(
δρ1(r) + δρ2(r)

)
dr = 0

where B =
[
1− 2Gm(r)

c2r

]
. In the last term, the integration order of r and r′ was inter-

changed and the names where interchanged too. Since the variations δρ1(r), δ ρ2(r) are

arbitrary, equation (31) implies that in the region r ≤ R1, where the two species coexist

1− λ1a1(r)− λ1b1(r)− λ2b2(r) = 0 , 1− λ2a2(r)− λ2b2(r)− λ1b1(r) = 0 (32)

where
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ai(r) =
(

ni(r)

ρi(r) + pi(r)

) [
1− 2Gm(r)

c2r

]−1/2

, i = 1, 2

bi(r) =
G

c2

∫ ∞
r

4πr′ni(r
′)

[
1− 2Gm(r′)

c2r′

]−3/2

dr′ , i = 1, 2

Equation (32) implies that

λ1a1(r) = λ2a2(r) (33)

so that

1− λ1

(
a1(r) + b1(r) +

a1(r)

a2(r)
b2(r)

)
= 0

which in turn implies, using the facts that λ1 and a1(r)
a2(r)

are constants

a1(r)′ + b1(r)′ +
a1(r)

a2(r)
b2(r)′ = 0

with a prime denoting an r-derivative.

Using the above equations results in

p1(r)′ = −G
c2

(
ρ1(r) + p1(r)

)m(r) + 4πr3

(
p1(r) + p2(r)

)
r2

(
1− 2Gm(r)

c2r

) (34)

similarily we get

p2(r)′ = −G
c2

(
ρ2(r) + p2(r)

)m(r) + 4πr3

(
p1(r) + p2(r)

)
r2

(
1− 2Gm(r)

c2r

) (35)

In the region r > R1, ρ1 and its variation are zero. Therefore, instead of Eq (32) one gets

1− λ2a2(r)− λ2b2(r) = 0 (36)

implying
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a2(r)′ + b2(r)′ = 0 (37)

which leads again to Eq (35), the equilibrium structure equation for species 2.

Equations (33) and (34) are the equilibrium structure equations that follow

from the Einstein field equations. Thus, these equations are the necessary and sufficient

conditions for the mass of the star to be stationary under arbitrary variations of the energy

densities of the two species. In case that the second order variations are not zero, the

stationary point is only an extremum: either a minimum implying a stable configuration

or a maximum implying an unstable equilibrium.

In addition, equation (33) implies that in the region where the two species

coexist

n1(r)

ρ1(r) + p1(r)
= Constant

n2(r)

ρ2(r) + p2(r)
(38)

which was obtained earlier (see Eq. (27)) as a result of the field equations and the

covariant conservation laws.

V. AN ILLUSTRATIVE EXAMPLE

In discussion of neutron star equation of state(EOS), the role of nuclear forces

is clearly important and is always an integral part of the discussion. We present here

an example, where we employ the nuclear equation of state of Steiner, Lattimer and

Brown [16]. It was obtained by fitting observational data of x-ray bursters to study the

mixed neutron star. The dependence of the pressure and the number density on the

energy density are displayed in Fig. 2. Thus, the maximal ordinary neutron star mass for

this EOS is found to be 2.44M� and the corresponding radius is 11.7 km.

Let us assume that Λ′ = 1
2
Λ where Λ′ and Λ are the scales for the mirror

and ordinary QCD, respectively. Since these scales largely control all masses, we expect

that also the mass of the dark fermion, mb2 is half of the mass of the ordinary neutron,

mb1. For the dark baryons we use the same EOS scaled appropriately, so that the energy
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FIG. 2. Left: pressure as function of energy density. Units for both are MeV fm−3.

Right:Number density times mass in units of g cm−3 as function of energy density in MeV fm−3

densities and pressures scale as the fourth power of the corresponding masses. Thus, with

this EOS, we have

p2(ρ2) =
1

16
p1(16ρ2) (39)

The maximal mass of a pure dark neutron star is ∼ 10M� and the corre-

sponding radius is ∼ 50km. It is expected that the mixed neutron star solution would

yield a mass, and radius intermediate between those for a neutron star and a pure dark

neutron star. We checked that the numerical results indeed obey equation (26). We also

found that in accord with equation (26), indeed no static solutions are obtained when

ρ1(0) > 16ρ2(0).

We present an illustrative example of a typical mixed neutron star model for

which: ρ1(0) = 600 MeV fm−3 , and ρ2(0) = 1300
16

MeV fm−3.

The results of the computation are summarized in Table I. The r-dependence

of the energy densities, the enclosed mass m(r), and φ(r) are displayed in figures (3), (4).

VI. DISCUSSION

The section V shows that a mixed neutron star can have a total mass higher

as measured by, say, orbital dynamics than pure, ordinary neutron stars. The radius, as

probed by ordinary massless and massive particles, is the neutron-sphere radius which is

similar in value to the radius of ordinary neutron stars as is the mass as measured by red
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TABLE I. Model Results. The last entry is the gravitational binding energy of the neutrons

inside R1, divided by the total neutron mass inside R1: (N1mb −M1)/((N1mb)

M M2 M1 m(R1)

3.74M� 2.4M� 1.34M� 1.56M�

R2 R1 Redshifts Neutron BE

31.9 km 11.1 km z(R1)=0.72, z(R2)=0.25 22%
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FIG. 3. Left: energy densities as function of radial distance. Right: Enclosed mass as function

of the radial distance.

shift analysis.

There are implications for phenomenology of compact X-ray sources, related

to the modified redshifts of emitted photons. This demonstrates that mixed neutron

stars with masses exceeding those of ordinary neutron stars are possible and to study

some of their general features. We now consider briefly the scenarios that can lead to the

formation of such compact objects.

ADM can cluster without self-annihilation. Still in order for joint clustering to

actually happen, further specific features are needed which may be difficult to build into

complete consistent models. We will not discuss in detail how mixed stars may evolve but

only sketch in broad terms how roughly equal masses of order of solar mass of baryons and
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dark fermions may possibly be brought together. Two general scenarios can be envisioned:

1. Dark matter is accreted onto ordinary stellar objects at various stages of the evolu-

tion of the latter, or conversely, ordinary matter is accreted onto pre-existing dark

stars , and

2. Dark and ordinary matter jointly cluster forming the mixed stars

1. Accretion of DM onto stars has been discussed in the past [17–19]. It was motivated

by noting that even tiny ( ηX = NX/NBaryons ∼ 10−11 ) admixtures inside the sun of

dark matter of mass mX ∼ 5 − 10 GeV can modify heat convection from the solar core

and help explain some apparent anomalies. If the density of dark matter near the star

has the average value of 0.4 GeV/mX cm−3 , then to generate ηX ∼ 10−11 over a Hubble

time we need that σXN , the cross- section for scattering of dark and normal nucleons,

exceed 10−37cm2. This is excluded for heavy DM by direct searches - but not for the

case of mX = 1/2 GeV that we focus on in this paper. Furthermore once ηX exceeds the

ratio of σXN/σXX (which can be as small as 10−15), the nonlinear process of scattering the

incoming DM on already captured X particles in the star dominates and further accelerates

the accretion [18]. There is however an upper “unitarity” limit on the accretion rate fixed

by the area of the star πR2 ( possibly with a “focusing” (vescape/vvirial)
2 enhancement ∼10

for the sun ) corresponding to the case of complete capture of all X particles which hit the
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stellar surface. Even at this maximal rate if a solar type star were to accrete in Hubble

time a solar mass of dark matter, we need that the DM density in its neighborhood will

be 109 times larger than the local halo density of 0.4 GeV cm−3. In general CDM starts

clustering before baryons and our star may naturally be situated in a dark matter mini-

halo. If this dark mini-halo formed at redshift z its density can be enhanced in comparison

with the cosmological DM density of KeV/cm3 by (6z)3 ∼ 2 × 108 for z ∼ 100. The

CMB spectrum and simulations [20], certainly exclude forming mini-halos of solar mass

at larger redshifts. Even then this achieves at most a 103 enhancement relative to the

local halo density. It seems that only if DM was dissipative it could have clustered more

effectively reaching the 109 enhancement required.

In passing, we note that the total DM accretion is not enhanced for bigger,

more massive red/blue giant stars . The surface density M/R2 of the such giant stars is

smaller making it difficult to accrete the minimal amount of X particles required in order

to initiate the non-linear regime and hence reach the unitarity limit . Furthermore the

lifetime of these stars scales like M−3 making them live considerably shorter than solar

systems. Also for more compact objects such as white dwarfs /neutron stars the enhanced

focusing is offset by the far smaller areas.

Turning to collider constraints on dark matter (DM) properties in our model,

the Atlas and CMS detectors at the LHC accelerator operate at unexplored energies and

unprecedented rates. Their implications for DM properties stem from the fact that the

detectors, triggered by large transverse momenta are ideal for detecting missing (trans-

verse) energy. This underlies the remarkable, extensive SUSY searches at LHC as pair

production of SUSY particles yields, often via spectacular decay chains, stable neutral

lightest susy partner (LSP) s which escape the detector leaving an extra signature of

missing transverse momentum. The failure to find any evidence for dark matter this way

implies that dark matter of mass less than 100 GeV and O(weak) X-Nucleon scattering

cross-section are excluded , if the production of X̄X pairs from a quark-anti-quark in

proton-proton collision at LHC and the X-quark or the X-N scattering in direct under-

ground DM searches proceed via a mediator heavier than both the ordinary and dark

nucleon. The detailed analysis in [2] improves the rather weak bounds on WIMP nucleon

elastic cross-sections obtained by direct underground searches for m(X) ≤ GeV, the re-

17



gion of interest here, by up to six orders of magnitude below the Fermi constant . The

above argument fails, and the bounds on the X-Nucleon cross-sections for the lighter DM

candidates can be evaded, as we explain in the following if the mediator V of the X-q

interaction is light. Specifically if V is lighter than the nucleon or the CDM particle X

-or more generally than the invariant mass MX̄X of the pairs in the above LHC signal

events-we can no longer approximate the V exchange in the pair production process by

a local four Fermi interaction . The X-Nuclear elastic scattering in the direct search ex-

periments generate very small momentum transfers: q = mX .βX ∼ 10−3.mX=MeV for

mX ∼GeV. (βX ∼ 10−3 is the typical virial velocity of the DM in the galactic halo). The

scattering cross-section ∼ g2g′2[m2
X + q2]−2 ∼ g2g′2mX

−4 is therefore enhanced relative

to the X̄ −X production cross-section ∼ g′2g2m(X̄ −X)
−4

with g, g the coupling of the

mediator V to X̄ − X and q̄ − q) by factors of ∼ 104 − 108 for mX = 1/2 GeV and

invariant mass mX̄−X ∼ 5 − 50 GeV. The non-observation at LHC of missing DM pairs

cannot then constrain elastic cross-section in direct searches. A natural candidate for

the light mediator V is the dark photon which kinetically mixes with our photon and is

relatively light (MV ≤ GeV), and which has featured in [3] as well as in a class of CDM

models in ref. [22] . To avoid as yet a far larger missing energy signal due to escaping dark

photons the latter should decay in the detector into e+e− or µ+µ− or pions and we should

verify that those final states cannot be picked up at LHC and/or fixed target experiment

as in Jeff lab [21]. Additional constraints that any DM scenario should satisfy, stems

from the negative results of indirect searches for DM via γ rays from X̄X annihilations

in over-dense regions and the galactic center in particular. The latter are readily satisfied

here for two independent reasons. First for a predominantly asymmetric DM with only

a tiny fraction of un-annihilated X̄ anti-particles remaining no further annihilations can

happen. Second the total energy in X̄ − X annihilations of only ∼ GeV implies that

even the (rare!) two body annihilations X̄ −X → 2 photons yield 0.5 GeV photons. The

cosmic rays producing π0s in the atmosphere generate a very large γ background in which

even the sharp 0.5 Gev line will be drowned.

Withnthe LHC bounds inoperative, we can allow significant ∼ 10−30 cm2 X-N

cross-sections. A strict mirror model analogy suggests low energy XX cross-sections as

high as 10−24 cm ∼ σ(N,N) barely consistent with bounds suggested by observing some
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elliptical halos which did not become spherical due to X-X collisions over cosmological

times [23]. Gravitational clustering of CDM in most standard scenarios starts much

earlier than for the baryons which then are still locked into the background radiation and

only later after recombination fall into the potential wells generated by the DM particles.

These CDM clustering have been studied in extensive n body simulations[20]. To our

knowledge there are no similar calculations of joint clustering of ordinary and mirror

baryons. It is possible that even the above cross-sections may be insufficient to jointly

cluster ordinary and dark baryons. For some analogous studies of clustering of ordinary

-and mirror matter, see [24] .

In general, dissipation is a key ingredient allowing significant clustering and

shrinkage of matter/dark matter clouds. Mirror DM can be dissipative if the mirror

photon mass mγ′ is smaller than the atomic mirror excitations O(me′α
2) where e′ is the

mirror electron. As emphasized above, we should keep mγ′ > 2me ' MeV. Otherwise γ′

becomes stable and can escape the collider leaving a missing energy signature as discussed

above.

We can however have an alternative, more exact mirror symmetric dark matter

scenario where the γ′ is also massless and does not mix with normal photon where dark

matter can be as dissipative as ordinary matter and joint clustering would then be possible.

In such a scenario, we need to use a Higgs-type portal in order to generate X − N

interaction.

2. This leaves us with the second scenario where dark matter, while strongly interacting

on its own, is non-dissipative . The idea is that the dissipative baryons that fall into

the initial potential wells generated by the DM, will through gravitational interactions

with the DM, dissipate also its energy. This then can allow dark and ordinary matter

to jointly co-cluster into denser and denser structures so as to form eventually the mixed

stars . This speculative scenario, however, should work only on relatively small scales,

because for the galaxy as a whole dark matter is not clustered. Also favorable condition

for this joint clustering may be relatively rare making mixed stellar objects of type being

considered rather infrequent.
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VII. SUMMARY

In summary, we have investigated the question of maximum neutron star mass

if a substantial fraction of its mass is contributed by fermionic dark matter particles.

We do this by solving the relativistic TOV equations using similar equations of state for

ordinary baryons and dark fermions as well as with heuristic consideration of balancing ki-

netic thermal energy with gravitational energy of the two components (dark and ordinary

baryons) of the neutron star. We find examples where, for the dark matter mass being

half the neutron mass, leads to a neutron star mass two to four times higher than the

Chandrasekhar mass. We also comment on possible scenarios where the required initial

conditions for the abundances of the dark matter in the neutron star could arise. This

work should be considered as a beginning attempt to get some ideas about the complex

problem of two strongly interacting dark fermion species in a compact star and is meant

to inspire future works on the subject. After a summary of our work appeared [10], this

problem was also considered in [25] where it was argued that the presence of dark matter

inside a neutron star softens the equation of state more strongly than hyperons, thereby

changing its mass.
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